Twitter proof: interpolating polynomials


< change language

In this post I will show the existence of a family of polynomials that are very useful for interpolation. For that I will use what are known as Lagrange polynomials.

Claim: given $n+1$ pairs $(x_i, y_i) $ with $0\leq i \leq n $ and with $x_i \neq x_j $ whenever $i\neq j $, there exists a polynomial $p(x) $ of degree at most $n $ such that $$p(x_i) = y_i,\ i = 0, \cdots, n $$
Twitter proof: consider the polynomial $$l_i(x) = \prod_{j\neq i} \frac{x - x_j}{x_i - x_j} $$ with $l_i(x_i) = 1$ and $l_i(x_j) = 0$ whenever $j \neq i$. Define $p(x) $ to be $$p(x) = \sum_{i=0}^{n} y_i l_i(x) $$ $p(x) $ has degree at most $n $ because so do the $l_i(x) $ and $p(x_k) = \sum_i y_i l_i(x_k) = y_k $.

In a future post I will show the uniqueness of the polynomial satisfying the constraints in the claim.

  - RGS

Popular posts from this blog

Pocket maths: how to compute averages in your head

Tutorial on programming a memory card game

Markov Decision Processes 02: how the discount factor works