Twitter proof: can't touch this (exponential)


< change language

In this twitter proof we will see that no polynomial grows faster than the exponential function.

Claim: the ratio $\frac{x^p}{e^x}$ tends to $0$ as $x $ tends to infinity.

Twitter proof: recall that by the Taylor expansion of $e^x $ we have $$e^x = \sum_{i=0}^\infty \frac{x^i}{i!}$$ and for $x > 0$ we have $$\frac{x^p}{e^x} \leq \frac{x^p}{\sum_{i=0}^{p+1} a_ix^i} \to 0 $$ where $a_{p+1} \neq 0$ thus proving our claim.

The way I like to look at this is "if the exponential has a bit of every polynomial inside, then it will grow faster than any fixed polynomial $p(x)$" (because, in particular, the exponential "has a bit" of all other polynomials that have degree higher than that of $p(x) $.
Neste post vamos ver que a função exponencial cresce mais depressa que qualquer função polinomial.

Proposição: o rácio $\frac{x^p}{e^x}$ tende para $0$ quando $x $ tende para infinito.

Prova num tweet: sabemos pela expansão de Taylor de $e^x $ que $$e^x = \sum_{i=0}^\infty \frac{x^i}{i!}$$ e portanto, para $x > 0$ temos $$\frac{x^p}{e^x} \leq \frac{x^p}{\sum_{i=0}^{p+1} a_ix^i} \to 0 $$ onde $a_{p+1} \neq 0$ provando assim a proposição.

O modo como eu gosto de interpretar isto é "se a exponencial tem um bocado de todos os polinómios, obviamente vai crescer mais depressa que qualquer polinómio $p(x) $ fixo", porque em particular a exponencial "tem bocados" de todos os polinómios com um grau superior ao de $p(x) $.

  - RGS

Popular posts from this blog

Tutorial on programming a memory card game

Pocket maths: how to compute averages in your head

Markov Decision Processes 02: how the discount factor works