Twitter proof: the sum of inverses diverges
Pt En In this post I will share with you my favourite proof that the series of the inverses diverges: $\sum_{i=1}^\infty \frac1i = \infty $. Claim : the series $\sum_i \frac1i$ diverges. Twitter proof : consider the series $$ \begin{align} &\frac12 + \frac12 + \frac12 + \cdots = \\ &\frac12 + 2 \times\frac14 + 4\times \frac18 + \cdots = \\ &\frac12 + \frac14 + \frac14 + \frac18 + \cdots \leq \\ &\frac12 + \frac13 + \frac14 + \frac15 + \cdots \end{align}$$ that clearly diverges because it is a series of a constant nonzero term. By the comparison test, the series of the inverses also diverges. Comment with your favourite way to prove this fact!! Neste post quero partilhar com todos a minha prova preferida de que a série dos inversos dos naturais diverge: $\sum_{i=1}^\infty \frac1i = \infty $. Proposição : a série $\sum_i \frac1i$ diverge. Prova num tweet : considere-se a série$$ \begin{align} &\frac12 + \frac12 + \frac12 + \cdots = \\ &...