Twitter proof: the roots go hand in hand


< change language

In this twitter proof we will have a look at a rather curious, yet simple, property of real polynomials.

Claim: if $p(x) = \sum_{i=0}^n a_ix^i $ is a polynomial with real coefficients, then for all complex numbers $z $, $$p(z) = 0 \iff p(\bar{z}) = 0$$ which means that the complex roots of $p(x) $ come in conjugate pairs.

Twitter proof: it suffices to show that $p(z) = 0 \implies p(\bar{z}) = 0$. Assume that $p(z) = 0$ and recall that $a_i = \bar{a_i} $: $$\begin{align} p(\bar{z}) &= \sum_{i=0}^n a_i\bar{z}^i \\ &= \sum_{i=0}^n \overline{a_iz^i} \\ &= \overline{\sum_{i=0}^n a_iz^i} = \overline{p(z)} = 0 \end {align} $$
Neste post vamos dar uma olhadela a uma propriedade curiosa, mas simples, dos polinómios com coeficientes reais.

Proposição: se $p(x) = \sum_{i=0}^n a_ix^i $ é um polinómio com coeficientes reais, então para qualquer número complexo $z $ vem $$p(z) = 0 \iff p(\bar{z}) = 0$$ o que significa que as raízes complexas de $p(x) $ vêm em pares conjugados.

Prova num tweet: basta provar que $p(z) = 0 \implies p(\bar{z}) = 0$. Assumamos que $p(z) = 0$ (e lembremo-nos que $a_i = \bar{a_i} $): $$\begin{align} p(\bar{z}) &= \sum_{i=0}^n a_i\bar{z}^i \\ &= \sum_{i=0}^n \overline{a_iz^i} \\ &= \overline{\sum_{i=0}^n a_iz^i} = \overline{p(z)} = 0 \end {align} $$ provando assim o pretendido.

  - RGS

Popular posts from this blog

Tutorial on programming a memory card game

Pocket maths: how to compute averages in your head

Markov Decision Processes 02: how the discount factor works